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The stability of the flow resulting from the oscillations of a sphere in a viscous fluid 
is investigated. The calculation for the transverse oscillations of the sphere is 
performed in a linear regime and the result in the weakly nonlinear regime is 
described ; the stability in the case of torsional oscillations is considered in the linear 
regime, where we take torsional oscillations to mean oscillations about a fixed axis 
through the centre of the sphere. In both cases we assume that the frequency of the 
oscillations is large, so that the unsteady boundary layer that results is thin. In  the 
transverse case, the linear stability problem depends only on the radial variable and 
time. Employing Floquet theory we may reduce the system to a coupled infinite 
system of ordinary differential equations, with homogeneous boundary conditions, 
the eigenvalues of this system being found numerically. In the torsional case, the 
linear stability problem again depends only on the radial variable and time, although 
the angular variation is retained in a parametric form and is determined at  higher 
order. A WKBJ perturbation solution is constructed and the evolution of the 
amplitude of the vortex is found. The solution is determined by finding a saddle point 
in the complex plane of the angular coordinate, and thus the critical Taylor number 
is derived. 

1. Introduction 
Here we are concerned with the stability of a class of flows which exhibit a 

phenomenon referred to as steady streaming. In particular, we study the flows 
induced by the transverse and torsional oscillations of a sphere of radius a, in a 
viscous fluid of kinematic viscosity v. These basic flows can be described using a 
boundary-layer approach similar to that used by Schlichting (L932), as we are 
considering motion close to a body. 

The transverse case follows closely the work of Hall (1984), who considered the 
transverse oscillations of a cylinder. Hall (1984) was motivated by the experiments 
of Honji (1981). The main motivation behind the present problem is to obtain further 
understanding of the instabilities involved in a spherical case. This motion is found 
to exhibit steady streaming, for further details of which, the reader is referred to 
Stuart (1966) and Riley (1967). Steady streaming involves the interaction of 
unsteady components of the disturbance to produce a steady correction to the basic 
flow in an outer boundary layer. The experiments of Honji (1981) show that the two- 
dimensional flow induced by the motion of the cylinder is unstable to axially periodic 
vortices of the Taylor-Gortler type, for sufficiently large frequency oscillations of the 
cylinder: this is shown theoretically also to extend to the spherical case. These 
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instabilities are most likely to occur in a Stokes layer at  the position where the 
surface of the sphere is locally tangential to the motion. 

Suppose that a sphere of radius a ,  oscillates along a diameter, with velocity 
U, cosot. The parameters of importance are /I, A and R, given by 

(1 .la*) 

The frequency parameter /I is taken to be small so that the unsteady boundary 
layer on the sphere is thin compared to its radius. The parameter h is the ratio 
between the amplitude of oscillations and the radius of the sphere, and R, is the 
steady-streaming Reynolds number, the importance of which is discussed by Stuart 
(1966). 

Because the resulting layer is thin, the radius of curvature of the path of the 
particles is the same as that of the sphere, that is l / a .  Using this assumption we 
define the Taylor number T by 

If the Taylor number is of order one, we may expect to find the instability 
mechanism described by Taylor (1923) and subsequently by Seminara & Hall (1976) ; 
thus we have R, = O ( P ' ) ,  and we focus our attention on the positions where the 
angular variable 8 = in, that is where the shear is greatest, and we further confine our 
attention to the regime /I + 0. Making use of (1.1 c) we may infer that A = O(@).  In 
this limit h is small, which implies that the layer at  the sphere is essentially a Stokes 
layer. Naturally we employ spherical polar coordinates, where the direction of 
oscillations is along the line 0 = 0, x .  

From a WKBJ approach we can see that the instability is confined to an 
O(@) region. We also include here a brief discussion on nonlinear effects for 
R,-R,, - O ( @ ) ,  where R,, is the critical steady-streaming Reynolds number. 
Formally, instability occurs when 

R, > R,, = R , ~ ' + R , p - ~ +  ..., (1.3) 
where R,, is to be determined. 

We now consider the torsional case, where the sphere oscillates torsionally around 
an axis of symmetry with a velocity U, sin ot. The parameters of importance in this 
case are the same as those of the transverse case. 

The stability properties of a Stokes layer depend on the local geometry. Hall (1978) 
analysed the stability properties of a flat Stokes layer in the presence and absence of 
an upper boundary. Tromans (1979) and Cowley (1986) have shown using a quasi- 
steady approach that Stokes layers are locally unstable to Rayleigh modes. In 
problems concerning Stokes layers with centrifugal effects, stability analysis 
employing Floquet theory agrees well with experimental results, as evidenced by 
comparison of the results of Seminara & Hall (1976) and Honji (1981). 

In the torsional case, h is again taken to be small, thus the layer that occurs at the 
sphere is again a Stokes layer. In this case the basic flow now has components in two 
directions, but with no component in the radial direction at  leading order. The flow 
is shown to be locally unstable to instabilities of the Taylor-Gortler type, which are 
most likely to occur where 8 = in, that is at  the 'equator' of the sphere when the 
oscillations are about the line 8 = 0,n. 

This work is similar to that undertaken by Papageorgiou (1987), who considered 
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the stability of oscillatory flow in a curved pipe. The instabilities that occur at the 
outer and inner bend in Papageorgiou’s work are similar to those shown to occur 
here. The perturbation solutions are expanded in terms of /3 and a WKBJ method 
can again be employed. This solution is found to become singular in the region of the 
equator, which suggests the need for an inner expansion. However, certain difficulties 
are found to arise in connection with this inner solution similar to those found by 
Soward & Jones (1983) who resolved the problem by the identification of a value of 
T for which the inner solutions do not exhibit a singularity at the equator. 

The rest of this paper is organized as follows: in $ 2  the transverse case is 
investigated in the linear regime; in 93 the torsional case is investigated; $ 4  contains 
details of the numerical work undertaken in both cases; and finally in $5 the results 
of the numerical work are presented and some conclusions are given, including a brief 
discussion of possible extensions to this work. 

2. Oscillations in the transverse case; formulation of the linear stability 
problem in the limit /3 + 0 

We employ spherical polar coordinates ( r ,  8’9) with corresponding velocity 
components (u,v,w).  From physical considerations it may be seen that the basic 
velocity is independent of the azimuthal coordinate, and the component in this 
direction is zero. As described in $ 1 we introduce a Stokes layer on the surface of the 
sphere of thickness p, and non-dimensionalize the flow quantities in the usual way 
such that 

We may then write the Navier-Stokes equations in the form 
u , v , w  N U,  r N a ,  t - l/w, p - p V .  (2.1) 

(2 .2d)  

where we use the parameters introduced in (l.l),  and V2 is given by the spherical 
polar Laplacian with a/a$ = 0, that is 

We introduce a boundary-layer variable 7 defined by 7 = ( r -  1)//3. Note from $ 1 that 

T d 2  R, = - 
B ’  (2.3) 

where T is the Taylor number which, as discussed previously, is taken to be of order 
one, implying that R, is of order F1. From the relationships linking 8, R, and A, we 
infer that h is of O(&. We may use this information to calculate the basic flow 
quantities, which are expanded in powers of p and are given by 

v = vo+/3v1+ ..., u = Buo+p2u1+ ..., p =po+/?pl+ ... . (2.4a-c) 
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The Ieading-order term of the v-component is given by 

(2.5) uo = asin 0(e-(’+’)V+’t - eit) + c .c . ,  

where C . C .  denotes a complex conjugate. We now perturb the basic flow by adding a 
perturbation velocity u’, which is of the same form as that used in Seminara & Hall 
(1976) and Hall (1984), and originally by Taylor (1932), 

Substituting this perturbation into the Navier-Stokes equations in the Stokes layer, 
we obtain 

LU = --2fiv0 psinO+Ql+O(/$), ( 2 . 7 ~ )  

LV = 4 o 9 s i n 0 + Q 2 + O ( @ ) ,  (2.7b) 

- aF 
all 

a17 

where L is given by 

( 2 . 7 ~ )  

(2.7d) 

( 2 . 8 ~ )  

and the a/a0 terms are neglected in this 8 = O(1)  region. The nonlinear terms Q1, Q2 
and Q, are given by 

P, (2.8b) 
- 8 0  2 w 8 7  T 

37 slnBa$ 2 
Q1 = 2U-+---- 

( 2 . 8 ~ )  

(2.8d) 

Here we now include 6 variations so the disturbance is taken to vary on a p- 
lengthscale, in the azimuthal direction ; note that the O(@)  terms included in (2.7), 
comprise both linear and nonlinear terms. We now linearize (2.7), by neglecting Ql, 
Q, and Q,. We also assume periodicity in $ so that 0, p and P may be taken to  be 
proportional to cosk$, and proportional to  sink$. We combine (2.7u-d), 
eliminating fi and P ,  to  obtain 

k2 - T: ,a2v0 at7 
= 2T - Vuo sin 0 -7p” 7 sin 8 - + O($),  

sin2 6 23 a7 ae 
I 

sin 0 
( 2 . 9 ~ )  

(2.9b) 
- av 

all 
LP = 4 ~ 0  sin 8, 
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where L has a/@ replaced by ik. When compared with the form of L used in Hall 
(1984) it may be seen that the effective wavelength of the disturbance is k/sin 0.  It 
can also be seen from ( 2 . 9 ~ )  that the &variation is slow compared with temporal and 
radial variations. The &dependence in 0 and may therefore be treated by means 
of a WKBJ approach, although in this case we are interested in the most unstable 
mode, and therefore a multiple-scaled technique is employed. We see from (2.9a) 
that the effective Taylor number for the flow is Tsin20, which has maxima a t  
0 = in, and so in the neighbourhood of 0 = in the effective Taylor number is given 

T( 1 - (€'-in)'+. . .). (2.10) 

Thus 0 = in represents a turning point of second order. If the instability is 
described by the WKBJ method this would imply that there exists a transition layer 
of thickness O(@) a t  this point, this argument being the same as that employed by 
Hall (1984), and similar to that of Hall (1982). 

We now rescale 0,  the angular variable, by introducing a = 0 ( 1 )  where a = 
P ( 8 - i n ) ;  vo is taken to be evaluated at 8 = ?p. We seek a solution of the form 

o= f,+&+@f 2 " . ,  F =  go+$g1+@g2 ..., (2.11a, b) 
where now from (2.10) the Taylor number T has the form 

Substituting (2.11) into (2.9), at leading order we obtain 

by 

T = T,+/$c+... . (2.11c) 

(2.12a) 

(2.12b) 

with the boundary conditions 

at 7 = 0, (2.12 c) 

fo,go+O as 7+m. (2.12d) 

f - - - g o = o  a f o  - 
O -  a7 

The eigenvalues of the above system are identical to those of Hall (1984). However, 
the correction to the wavelength induced by the spherical geometry causes differences 
in the higher-order equations, because the effective wavelength is 

k(1+ia2$+ ...). (2.13) 

In order to solve the leading-order eigenvalue problem, we use Floquet theory. The 
flow quantities are decomposed into modes which are periodic in t ; the solutions are 
taken to be of the form 

n-m n-m 
f o  = A(a)  fteiflt, go = A(a)  C gteiflt. (2.14a, b)  

Substituting these forms of the solution into the governing equations we obtain an 
infinite set of coupled ordinary differential equations, given by 

($ - k2 - Sin) (5 - k2) f," = k2[g:-1(e-(1+i)v - 1 )] + [g:+l (e-('-"v - 1 )], (2.15 a) 

n--m n--m 

d7 dV2 
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with relevant homogeneous boundary conditions for n = 0, f 1, k2, ..., 00. The 
numerical solution of this system will be discussed in §4.17 and the eigenrelation 
k = k(T,) will be computed. Note that A(a) ,  the amplitude, remains undetermined 
at this order. 

At the next order, the partial differential system governing the behaviour of fl and 
g1 is given by 

(2.16 b)  

This system has identical boundary conditions to those of (2.9), but since this system 
is inhomogeneous we require a solvability condition. It can be seen from the 
decomposition of fo and go into their modes that the system (2.12) decouples into two 
independent solutions, 

f t = O  (neven), g t = O  (nodd), (2.17 a) 

f t = O  (nodd), g t = O  (neven). (2.17 b )  

The most unstable mode is numerically verified to be (2.17b). As in (2.14) we 
decompose (fl,gl) into composite modes, that is 

n-m n-m 

f1 = c f3a77/J)eint, g, = 22 g:(a,rI)eint, (2.18a, b)  

implying that only the equations for f:, g:+I (n odd) are forced for the system (2.17b), 
that isft ,  g;+l (n odd) non-zero, and thus f: = g:+l = 0 for (n odd). The solution for 
(2.16) can be written as 

n--m n---oo 

where B(a) is a second amplitude function which remains undetermined at this order, 
but can if necessary be determined a t  higher order. At the next order we obtain a 
partial differential system to determine (f2, g 2 ) ,  given by 

fo+2T,k2govoa2, ( 2 . 2 0 ~ )  

($-k2-22)g2 = 4 f 2 L + 2 v  av T ;  '+k2a2go .  ag 
at a? 2 Oaa 

(2.20b) 

The last term in ( 2 . 2 0 ~ )  and the last term in (2.20b) do not appear in the equivalent 
equations in Hall (1984). These terms arise as previously predicted due to the form of 
the effective wavenumber seen in (2.13). It should also be noted here that there is no 
term on the right-hand side of (2.20a) of the form voll foa2, which occurs in Hall 
(1984) ; this is because of cancellation due to the extra terms arising from the effective 
wavenumber change. The boundary conditions are again those of the system given 
by (2.12). The forcing terms on the right-hand sides of the equations are synchronous 
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with the solutions of the homogeneous form of (2.20) and a solution for (f2, g2) will 
not in general exist. However, considering the adjoint solution of the first-order 
system and using the form (2.19) for (f,, gl), we obtain the solvability condition 

This is a version of the equation found in Hall (1984)) in which p2 = 0. 
is given by 

,u2 = k2 

This is a version of the equation found in Hall (1984)) in which p2 = 0. 
is given by 

2k2gofJvod~dl  
J 1-0 J t-o 

11.. = . 

(2.21) 

The term ,ul 

(2.22a) 

(2.22b) 

The adjoint functionsfJ and satisfy the differential system adjoint to (2.12), that 
is 

(2.23a) 

(2.23b) 

The eigenvalues of this system are identical to those of (2.12). The coefficients ,ul and 
,u2 are both functions of k, and hence T,. Our calculations show that near the 
minimum value of T,, p1 is positive. We can rearrange (2.21) to give 

(2.24) 
d2A 
da2 
-+p1(T , -a2 f )A  = 0, 

where f = -(-+-P2), 1 3ru1 
P1 

(2.25) 

and so now this equation mimics the corresponding equation in Hall (1984). 
Equation (2.24) has decaying solutions as a+& 00 if ,ul > 0 given by 

A(a)  = A,(a) = U ,  (2.26) 

where U, is the nth parabolic cylinder function, and the value of q associated with 
A, is 

(2.27) 

For the least stable mode, given by n = 0 we have 

which exhibits the required exponential decay as a + f 00. 

here, but basically we find that the amplitude satisfies the equation 

A,(a) - exp (-8(P1f>"."), 

The nonlinear analysis in this case follows that of Hall (1984), and is not included 

A+y2a2A = yA3, (2.28) 
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where T is the value of predicted by linear theory. This is the same equation as 
found by Hall (1984), after using the transformation (2.25), to within multiplicative 
constants of the coefficients. The values of ,ul and ,u2 are the same as those in the 
linear amplitude equation (2.22), as would be expected in weakly nonlinear theory. 
The full analysis involves the extra steady-streaming boundary layer, as studied by 
Stuart (1966). In this outer layer the perturbation interacts with itself to force a 
steady component of the basic flow, which can be seen to change the slip velocity a t  
the wall, and thus give rise to premature separation. For details of this phenomenon 
the reader is referred to Hall (1984). 

3. The torsional case 
3.1. The basic flow 

The basic velocity can be taken to have components (u, v, w) which correspond to the 
spherical polar coordinates ( r ,  8,+) ; from physical considerations these velocity 
components may be assumed to be independent of 4. The Navier-Stokes equations 
are written in terms of spherical polar coordinates, and the sphere is considered to 
oscillate torsionally about the 8 = 0, n axis, thus yielding the boundary conditions 

u , v  = 0;  w = Usinwtsin8, r = 1, (3.1 u-c) 

and u,v,w+O, r+w.  (3.2u-c) 

Balances in the r -  and 8-momentum equations yield the following non-dim- 
ensionalization in the layer : 

, t -@-I, r - a ,  p - p u 2 .  (3.3) 
u2 

w - u ,  u , v - -  
aw 

Now dimensionalizing the Pu’avier-Stokes equations using the above scalings we 
obtain 

where 

(v sin 8) = 0, --(r2u) +-- 
r2 ar r sin 8 88 
l a  l a  

(3.4d) 

Again this is a Stokes layer on the surface of the sphere, of thickness O(p),  and we 
therefore introduce a scaled variable 7,  such that r = 1 +pq, where 7 = O( 1) and thus 
in this layer we have 

(3.5u, b) U B  = puo + p2u1 + . . . , VB = vo + pvl + . . . , 
wg = wo+pwl+ ..., P, = P O + P P l + . . .  . (3.5c, d )  

Solving for the basic flow quantities a t  leading order we obtain 

oo = cos$sin$(a(l -e-27) +{eZit[&i d2(e-d2(1+i)9)- l )+a i ( l  -e-2(1+i) v)]+c.c.}). 
w,, = -+sin 8(i e--(1+i)9+it + c.c.), (3.6a) 

(3.6b) 
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This solution was first discussed by Carrier & DiPrima (1956). Note that these 
solutions do not satisfy the boundary conditions at infinity ; instead a further layer 
is necessary to satisfy this condition and is of thickness r -  1 = O(@),  as shown by 
Stuart (1966). The basic flow in this outer layer is not required in this linear analysis, 
although it would be required if the analysis were extended to a weakly nonlinear 
regime. 

3.2. Formulation of the linear stability problem 
We now perturb the basic flow with a quantity proportional to a small vanishing 
parameter el, so that the resulting analysis is linear. We therefore write 

u = (uB,vB,wB,pB)+~l( . i i ,~” t~ / I$)+ . . . ,  (3.7) 
where now A2 = /IT from arguments included in 52. These expansions may be 
substituted into (3.4) and linearized with respect to el. We seek a solution of the form 

(3.8) 
with similar expressions for v“, G,$, where the quantities with tildes are functions of 
7 and t only, and E is given by 

.ii = bl(B)E.iil+/Ib2(B)E.ii2+ ... +c.c., 

E = exp ( ip ’  lo k(f3’) dB.), (3.9) 

where the lower limit in this integral form is arbitrary. The assumed form for E 
implies that we are considering a disturbance with wavelength of the same order as 
the thickness of the Stokes layer. We expand the Taylor number as 

T = %+/IT,+... . (3.10) 

In this problem we consider disturbances that are independent of 9, that is they do 
not evolve around the sphere. These modes were demonstrated to provide the most 
unstable linear modes, for example see Seminara & Hall (1976). It is possible that 
local inflexion instabilities will occur, as discussed by Tromans (1979) and Cowley 
(1986). 

3.3. The stability problem in the limit /I+ 0 
Substituting the flow form given by (3.7) into (3.4), at leading order we obtain 

(3.11a) 

acl avBO i a2v“ 

at 37 2 a72 
-+ (T, vBo ik + ;k2) El - 2wB0 Gl cot f3+ T, -til + ikPl --> = 0, (3.11 b)  

ac, i a2G 
at -+ (T, vBo ik ++jk2) d, + T, awB08, av --1 2 a 7 2  = 0, 

ac, 
a7 
- + ikC1 = 0. 

(3 .11~)  

(3.11d) 

It is convenient to introduce a vector q to represent the perturbation, in a similar 
manner to Papageorgiou (1987), and as was originally used by Eagles (1971). We 
have q = E(ql + /Iq2 + Tqa + . . . ), and the qi are given by 

, .iit,Gi, di 
aci xi ad, 

4t= #t,- - - (i = 1,2, ...). I’ I av ’ a l l ’  a7 
(3.12) 
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Here and in the rest of the paper superscript T will denote the transpose of a matrix 
or vector. The first- and second-order linear stability equations may be expressed as 

(41) = 0, ( 3 . 1 3 ~ )  

bz(8) Jqz = L413 (3.13 b) 

where J is a ( 7 , 7 )  complex matrix differential operator defined by 

av av 

at a7 
J V  G C-+Av+B- (3.14) 

The elements of L are available from the author, and include second-order basic flow 
quantities and terms involving b,(@ and db,/d8. The matrices A, B, and C are also 
(7 ,7 )  and are given by 

A =  

0 0 0 0 T,vBOik+$k2 0 - 2WBO 

vBo ik + $k2 -2wBO Cot 8 T"F 

O 0 O 0  %a$ 

i k O O O  

0 T,  vBo ik + akz awl30 

0 1 0 0  0 ik 0 
0 0 0 0  0 0 0 
0 0 0 0  0 0 0 
0 0 0 0  0 0 0 

, (3.15) 

bij=Oforall i= 1 ,2  ,..., 7 , j =  1 , 2  ,..., 7 , e x c e p t b , , = 1 , b , ~ = - $ , b , , = - ~ , b 3 , = - ~ ~  27 

cij = 0 for all i = 1,2, ..., 7, j = 1,2 ,  ..., 7,  except c,, = 1, cz8 = 1,  c3, = 1. 
The system (3.13b) has a solution only if the appropriate adjoint condition is 

satisfied, from which we can derive a differential equation to determine the 
behaviour of the leading-order amplitude function b,. We introduce J t ,  which is the 
operator associated with the adjoint system of (3.13a) as follows: 

(3.16) 

If V is the solution of the first-order adjoint system we have 

J t (  V) = 0, (3.17) 
and since 4,  is a solution of ( 3 . 1 3 ~ )  

V J ( q l )  = 0. (3.18) 

Integrating (3.18), over the entire Stokes layer (7 = 0, a) and over one time period 
( t  = 0,2n) we can derive a solvability condition. The previously mentioned 
orthogonality condition for (3.13 b) leads to the result 

c" VLq,dtdy=O. ( 3 . 1 9 ~ )  
J 7-0 J t-0 

From this it is possible to derive an ordinary differential equation governing the 
leading-order amplitude function b,(8),  namely 

(3.19b) db 
fl(@ -$+fz(@ b,  = 0, 

where fi, fz are double integrals over the entire problem space. 
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We have a differential equation for the leading-order amplitude, so we can 
determine the size of the vortex for a critical Taylor number, T, (for a fixed 8 )  given 
the wavenumber, k(8). It is expected that vortices will be of larger amplitude in 
certain positions (i.e. for certain values of 8) .  Owing to the form of E ,  (3.9), and the 
fact that k may be complex, leads to the possible decay of the vortex amplitude with 
respect to 8, and it is consequently necessary to solve the problem in the complex 8- 
plane; for details of this calculation see $4. 

If we attempt a similar analysis to that of Papageorgiou (1987), we arrive at the 
same conclusion. We find an irregularity at  the origin in the amplitude equation. 
Briefly, expand in terms of 4, which leads to the amplitude equation 

(3.20) 

where a,, a, are known constants. A solution of this equation may be shown to behave 
in the form 

rl 8;t exp ((01, - a,,) 4 ), (3.21) 

where r, is a constant. This form of solution shows that as O1+0, b, becomes 
singular, suggesting that a different structure occurs close to = 0. To determine 
this structure it is again necessary to extend the solution into the complex 8-plane. 
By the identification of a complex value of 6’ at which a saddle point occurs, it is 
necessary to treat this problem in a similar manner to Soward & Jones (1983). It can 
be shown that the amplitude equation becomes, 

(3.22) 

where the I are double integrals over the entire problem space, 8 is an inner real 
angular variable and d ,  is the first-order perturbation amplitude. We can show that 
the solution for d ,  is given by 

a,(@) = e-a*e*P(8), (3.23) 

where a is a real constant and P(8) is a Hermite polynomial. The exponential factor 
in (3.23) ensures that the amplitude decays as @ - t + m .  The identification of the 
saddle point is attempted numerically in $4.2. Note that the point is at an O(1) 
distance from the real &axis; further arguments as to the validity of this solution 
may be found in Papageorgiou (1987). 

4. Numerical solution of the eigenvalue problems 
4.1. Numerics for the transverse case 

The numerical solution of the eigenvalues for this system is tackled in similar manner 
to the torsional case, and may be written symbolically as 

F(T,, k) = 0. (4.1) 

As mentioned previously we calculate the asymptotic form of the solution at  some 
qm,  taken to be large enough that we may neglect exponentially small terms in the 
basic flow. This solution is then integrated towards q = 0, using a fourth-order 
Runge-Kutta scheme, and then discrepancies involved in this calculation are used to 
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FIGURE 1. Neutral curve for the transverse case, with critical Taylor number 11.99 occurring at 
wavelength 0.51. 

iterate to obtain a better estimate of To, for a given k. When exponential terms are 
removed from (2.12), we are required to solve 

ff = -Tok2(gg-l+g:+l), ( 4 . 2 ~ )  

(4.2b) 

We only retain a finite number of Fourier modes, and for each one of these we find 
there are three independent solutions which decay as T,I + co. If 2M+ 1 modes are 
retained we obtain 6M+3 independent solutions of the system, which can each be 
integrated to T,I = 0 as described previously. We now satisfy the 6M+2 boundary 
conditions at the sphere, and the ‘extra’ solution at T,I = 0 will only be satisfied if (4.1) 
is satisfied, and so this condition may be used to iterate T,. The secant method was 
found to be adequate for this procedure. 

Notice, as previously stated in (2.17), that the system decouples, and we only 
investigated the system (2.17b), since this produces the most unstable modes. Note 
that by only considering this ‘half’ of the system we reduce the order of the system 
to be solved numerically to U + 2 .  In this calculation we used M = 6 and qm = 10 
and forty steps were used in the Runge-Kutta scheme, these values being found to 
be sufficient by increasing them and checking that consistent results were obtained. 
The neutral curve is given by figure 1, and its minimum is given by 

this result being consistent with that of Hall (1984). Note it was necessary to effect 
this calculation as there is no transformation between any integral in Hall (1984) and 
that for p2. However, it is not necessary to perform the calculation for the evaluation 

T,, = 11.99, k, = 0.51, (4.3) 
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FIQURE 2. First-order eigenfunction $, normalized so that u” is unity at the sphere, evaluated 
at the critical Taylor number. 

of ,ul and y as by use of the correct size disturbance we can make these expressions 
linear multiples of the corresponding results of Hall (1984). These constants are given 

p1 = 0.0098, p2 = -0.013655561, y = -0.087(25) = -0.4138. (4.4a-c) 

It is necessary to solve the adjoint system given by (2.23) (which produces the same 
eigenvalues as the original system and so serves as a check on consistency). We 
combine the results of (4.4a, b )  to obtain 

We also include plots of the function f,” (figure 2), and of real and imaginary parts of 
the first harmonic g i  (figure 3 ) .  These functions are normalized so that azfo”/ar2 = 1 on 
7 = 0. 

4.2. The torsional cage 
As is to be expected the methods employed in this section follow closely those 
employed by Papageorgiou (1987), since we are solving a system involving the same 
mechanism but with a different basic flow. The leading-order eigenvalue problem is 
solved numerically, subject to the boundary conditions of no slip at the sphere and 
exponential decay a t  infinity. The method used is a modification of that described in 
$4.1, with a modification for different asymptotic behaviour a t  infinity. It is also 
necessary to progress in f;, where 6 is the distance from the real &axis, in order to 
determine the saddle point, although in fact 6 is purely parametric, and so solving the 
eigenproblem at any fixed E introduces no additional difficulties, and the value at  a 
previous f; can be used to provide the initial estimate for the eigenvalue. 

The neutral curve for 6 = 0 is given here as figure 4; note that the minimum occurs 
at k, = 1.19, where the critical Taylor number has the value T,, = 161.95. We now 
note that the minimum value of the Taylor number may not occur at the same value 
of k for all values of 6 ,  as indeed was the case in Papageorgiou (1987). It is found 

by 

f =  17.998. (4.5) 

3 F I, .M 239 
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FIQURE 3. Second-order eigenfunction g:, real and imaginary parts, computed 
at the critical Taylor number. 
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FIQURE 4. Neutral curve for torsional case where 6 = 0, with critical Taylor number 

T, = 161.95 occurring at k, = 1.19. 
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FIQURE 5. Variation of critical Taylor number G, with 5. 
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FIQURE 6. Variation of critical wavenumber k, with 6.  
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necessary to find the minimum value of the Taylor number for each value of 6, the 
result of which is displayed in figure 5. We also show the values of k at which the 
minimum occurs against 5 in figure 6. The saddle point occurs at, 

To, = 163.82, k, = 1.2048, 6, = 0.00284. (4.6) 
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Note that the value of 6 at which the minimum occurs is much smaller than that 
occurring in Papageorgiou (1987), because of the size of the value of T, occurring in 
the weighting factors associated with the basic flow quantit,ies. 

5. Conclusions 
We have shown that in both the torsional and transverse problems the oscillatory 

viscous flow considered, interacting with the rigid boundaries of convex curvature, 
may become unstable to Taylor-Gortler vortices. I n  the transverse case we have 
shown that the flow is linearly unstable to the mechanism described about the ‘rim’, 
that is essentially where the slip velocity is at: a maximum. Similarly in the torsional 
case the flow is shown to be linearly unstable to a vortex structure at the ‘equator’. 

I n  the transverse case we consider an instability local to €J = $r and the vortices are 
shown to be confined to a layer of thickness ,& surrounding this location. We can 
show that 

(5.1) R,, = 16.956(/3’ + 0(/3$) 
and A, = 2.911(@+0(/!@). 

So if R,, the steady-streaming Reynolds number is greater than its critical value Rsc, 
then the vortices grow exponentially in the aforementioned layer. The amplitude of 
the linear disturbance is given by a parabolic cylinder function and thus the vortex 
decays away from the region of vortex activity. 

I n  the torsional case the amplitude of the instability, in the linear case, is found 
to be governed by an exponential factor and an algebraic term varying with an inner 
angular variable, which ensures decay away from the region of activity, but we also 
have a singularity in the amplitude as 0, (the inner angular variable) tends to zero. 
It is found to be necessary to  extend the analysis into the complex 0-plane, as in 
Soward & Jones (1983). We can then resolve the problem of the singularity and the 
amplitude is found to be an exponential factor multiplying a Hermite polynomial, 
thus we have the required decay a t  infinity and thus the singularity problem is 
resolved. 

The mechanisms involved here are of a similar type to those in Papageorgiou 
(1987) and Hall (1984), included in which are comparisons with relevant experiments, 
to which the reader is referred for further discussion. 

The results of the nonlinear calculation given here apply only for the transverse 
case, and are consistent with those of Hall (1984), which includes detailed discussions 
of the numerical solution of the weakly nonlinear amplitude equation. It should be 
noted at this point that this result was not as expected owing to the subcritical 
nature of the instability. 

Both problems are prone to  a phenomenon, induced by the oscillatory motion, 
known as steady streaming. Associated with which is the steady-streaming Reynolds 
number, R,. The importance of this parameter was first explained by Stuart (1966), 
who showed that for R, $- 1 the steady streaming decays to zero in an outer boundary 
layer of relative thickness R!, the instability described in this paper occurs for 
R, @ 1. Stuart (1966) stated that Reynolds stresses and the instability are responsible 
for driving the steady streaming, as reported in Hall (1984, 1986) which may invoke 
premature separation of the steady streaming boundary layer. 

It may be interesting to consider different geometries, for example extending both 
problems to  ellipsoidal coordinate systems. Certain difficulties are encountered in the 
initial formulation of these problems, for example the derivation of the basic flow. 
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Hall (1984) discussed the extension of the transversely oscillating cylinder to that of 
an ellipsoidal cylinder, although in that case it is possible to transform this cylinder 
back into one of circular cross-section. This is not possible in these higher 
dimensional cases, since the basic flow will involve the angular coordinates in other 
than purely parametric forms. It is most likely that we will be able to extend these 
problems into geometries with small eccentricities from the spherical case, although 
it also seems preferable to restrict our attention to solids of rotation, thus reducing 
the number of degrees of freedom associated with the problem by one. 

The author acknowledges Professor P. Hall, for suggesting both of the problems 
contained herein, and comments of the referees. This work was done while the author 
was in receipt of a SERC research studentship. 
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